
NOVEL LEAD TETRAACETATE OXIDATION OF LONGICYCLENE: FORMATION AND REACTIONS OF THE ELUSIVE TRUE LONGICAMPHOR^{1,2}

S.N.Suryawanshi and U.R. Nayak * National Chemical Laboratory, Poona 8 (India)

(Received in UK 26 April 1977; accepted for publication 9 June 1977)

Notwithstanding the rich and bountiful chemistry of longifolene $\underline{1}$ unfolded during a long span of five decades and more, the lo-ketolongibornane derivative 2 has remained elusive so far. The theoretical importance of $\underline{2}$

stems from the fact that it constitutes the "true" longicamphor (active methylene intact) while the 8-keto longibornane 3, known for a long time as longicamphor, in the absence of $-COCH_2$ - moiety, should now be strictly designated <u>pseudo</u>-longicamphor. In a novel approach to achieve this strategic functionalization, the olefinic nature of the uniquely built-in methylcyclopropane moiety of a close relative of 1 viz. longicyclene³ 4 (R=H) has been exploited. This communication highlights the Pb^{IV}/OH⁻ reaction on 4 (R=H) which generates the longicamphor 2 for the first time. The homoenol \rightarrow homoketone⁴ mechanistic pathway has also been established for the LTA/base transformation of longicyclene 4 (R=H)/cyclene 5 (R=H) to longicamphor 2 /camphor⁵ 6 by the actual isolation of the intermediate homoenol acetate in either case.

The product from Pb^{IV} oxidation of $\underline{4}$ (R=H) in AcOH ($80^{\circ}/6$ hr), after base hydrolysis, followed by chromatography (SiO_2/IIa) furnished a pure ketone, $C_{15}H_{24}O$ (yield⁶: 75%; M⁺ 220, base peak), the spectrochemical properties of which dictated structure 2 for it: IR (smear): 1745 and 1420 cm⁻¹ ($O=C-CH_2$ in a 5-ring); PMR (CCl₄): four tertiary methyl singlets at 0.83 (3H x[']2), 0.87 and 1.02 δ (longiborname system). In sharp contrast to the extremely hindered pseudo-longicamphor 3, 2 was highly reactive: semicarbazone, m.p. 244°; 2,4-DNP, m.p. 118°. In conformity with the assigned structure 2, the ketone, on reduction (semicarbazone/KOBu^t) generated longibornane, identified by direct comparison. Finally, the ready response of the new ketone to two characteristic reactions of camphor clinched the structure 2 beyond any doubt: (a) $2 \rightarrow \text{longicamphorquinone 7}$ (yellow solid, m.p. 118°; SeO₂-AcOH) $\rightarrow \text{longicamphoric acid 8}$ (m.p. 180°; alkaline H₂O₂) and (b) hydrazone of $2 \rightarrow \text{longicyclene 4}$ (R=H; yellow HgO).

The precursor for longicamphor 2, isolated from the LTA reaction before hydrolysis, has been characterized as 10-acetoxy longicyclene 4 (R=0Ac): $C_{17}H_{26}O_2$ (M⁺ 262); IR (smear): 1750 and 1220 cm⁻¹; PMR (CCl₄): four tertiary methyl singlets at 0.93, 1.02 (3H x 2) and 1.05 δ , 2.0 δ (s, one -0COCH₃). Homoketonization of the homoenol 4 (R=0H), arising from the substrate 4 (R=0Ac) in alkaline medium, generates exclusively 2. In a comparative study, the formation of camphor in the oxidation of cyclene with LTA, has also been mechanistically rationalized in a similar fashion by isolating the parent tertiary acetate 5 (R=0Ac; yield: 56%): $C_{12}H_{18}O_2$ (M⁺ 194); IR (smear): 1750 and 1235 cm⁻¹; PMR (CCl₄): three tertiary methyl singlets at 0.82, 0.98 and 1.02 δ , 1.98 δ (s, one -0C0CH₃).

Full details of this investigation, including the structures of other minor compounds isolated, will be published elsewhere.

REFERENCES AND NOTES

- 1 Communication No.2140, National Chemical Laboratory, Poona 8 (India).
- 2 Newer Aspects of Longifolene-IV.
- 3 U.R. Nayak and Sukh Dev, Tetrahedron 24, 4099 (1968).
- 4 a) A. Nickon, J.L. Lambert, R.O. Williams and N.H. Werstiuk, J. Amer. Chem. Soc. 88, 3354 (1966);
 - b) D.H. Gibson and C.H. Depuy, <u>Chem. Rev. 74</u>, 605 (1974).
- 5 Y. Heya, Nippon Kogaku Zasshi 80, 1163 (1959); C.A. 55, 45701 (1961).
- 6 Based on recovered longicyclene; without taking it into account the yield is <u>ca</u> 50%.